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The stability of a two-layer return thermocapillary flow in the presence of an inclined
temperature gradient is investigated. Both a linear stability analysis and nonlinear sim-
ulations have been performed for an air–water system. It is found that a rather weak
deviation of the mean temperature gradient from the vertical direction suppresses
Pearson’s instability mechanism and leads to the appearance of oblique hydrothermal
waves. In a certain region of parameters, transverse convective rolls drifting with the
mean flow appear.

1. Introduction
The thermocapillary instability of the mechanical equilibrium in a horizontal fluid

layer subject to a vertical temperature gradient (Marangoni–Bénard problem), was
first investigated by Pearson (1958). Later, this problem was studied in the case of
a two-layer fluid system (Smith 1966; Simanovskii & Nepomnyashchy 1993). The
instability leads to the appearance of stationary convective patterns.

Another well-known problem, which was thoroughly investigated in the literature,
was the instability of parallel thermocapillary flows generated by a horizontal tem-
perature gradient. The most typical instability of such flows is connected with oblique
hydrothermal waves (Smith & Davis 1983a; Davis 1987). These waves have been

observed in experiments (Ezersky et al. 1993; Daviaud & Vince 1993; Garcimartín,
Mukolobwiez & Daviaud 1997; Riley & Neitzel 1998), though the data concerning
the propagation direction do not always coincide with the theory.

In contrast, the stability of thermocapillary flows in the presence of inclined
temperature gradients has hardly been studied, unlike the case of buoyancy-induced
flows (see Kelly 1994). To our knowledge, the former problem has been considered only
in the limit of a large Prandtl number in the framework of the linear theory (Davis
1987), and it was investigated neither by numerical simulations nor in experiments.

In the present paper, the stability of thermocapillary flows under the joint action
of vertical and horizontal temperature gradients is studied. In § 2, a mathematical
formulation of the problem is presented. Section 3 is devoted to the description of the
linear stability results obtained for the air–water system. The numerical simulations
are discussed in § 4. Section 5 contains concluding remarks.

† Author to whom correspondence should be addressed.
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Figure 1. Geometrical configuration of the region and coordinate axes.
The origin O is within the front cross-section.

2. Formulation of the problem
Typically, thermocapillary flows are studied in the framework of the one-layer

approach, i.e. the hydrodynamic and heat processes in the gas phase are neglected,
and a model condition for the temperature on a free surface is used. In the present
paper, a more exact two-layer approach is applied: all the processes are considered in
both phases simultaneously.

Let the space between two parallel rigid plates at z = −a1 and z = a2 be filled
by two immiscible viscous fluids (see figure 1). The temperature on these plates is
fixed in the following way: T (x, y,−a1) = Ax+Θ, T (x, y, a2) = Ax. Thus, a constant
temperature gradient A is imposed in the direction of the axis x. For fixed values of
x and y, the difference between the temperatures of the lower plate and the upper
plate is equal to Θ. It is assumed that the interfacial tension coefficient σ decreases
linearly with temperature: σ = σ0 − σ1T . The buoyancy force is neglected.

The variables referring to the lower layer are marked by index 1, and those referring
to the upper layer are marked by index 2. Density, kinematic and dynamic viscosity,
heat conductivity, thermal diffusivity of the fluid m are, respectively, ρm, νm, ηm, κm,
and χm.

In the present paper the interface is assumed to be plane: z = 0. Strictly speaking,
the interface will be perfectly flat only if horizontal pressure gradients in both fluids
are equal. Generally, these gradients are not equal, so that the interface is deformed
in such a way that the pressure difference generated by the thermocapillary motion
is balanced by the hydrostatic pressure and the interfacial tension. However, in
some cases the deformation is negligible. The relevant parameters characterizing the
interface deformation are ε = Alxσ1/σ0 (Pshenichnikov & Tokmenina 1983) and
R = Alxσ1/(ρ2 − ρ1)ga2 (Tan, Bankoff & Davis 1990); g is the acceleration due to
gravity, lx is the characteristic scale of the region in the x-direction. In the present
paper, we assume that these parameters are small, hence the interface deformation
caused by the difference of horizontal pressure gradients can be neglected.

Under the assumption z = 0 we disregard the deformational instabilities discovered
by Smith & Davis (1983a, b). One can expect these instabilities to be unimportant if the
crispation numbers Cj = ηjχj/ajσ0 � 1, and the Galileo numbers Gj = ga3

j /νjχj � 1,
j = 1, 2.
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The following notation is used: ρ = ρ1/ρ2, ν = ν1/ν2, η = η1/η2, κ = κ1/κ2,
χ = χ1/χ2, a = a2/a1. As the units of length, time, velocity, pressure and temperature,
we use a1, a

2
1/ν1, ν1/a1, ρ1ν

2
1/a

2
1 and Aa1, respectively.

The complete system of nonlinear equations can be written in the following dimen-
sionless form:

∂v1

∂t
+ (v1 · ∇)v1 = −∇p1 + ∆v1,

∂T1

∂t
+ v1 · ∇T1 =

1

P
∆T1, ∇ · v1 = 0;

 (1)

∂v2

∂t
+ (v2 · ∇)v2 = −ρ∇p2 +

1

ν
∆v2,

∂T2

∂t
+ v2 · ∇T2 =

1

χP
∆T2, ∇ · v2 = 0,

 (2)

where P = ν1/χ1 is the Prandtl number of the lower fluid.
On the rigid horizontal plates, the following boundary conditions are used:

z = −1: v1 = 0, T1 = x; (3)

z = a: v2 = 0, T2 = x− b, (4)

where parameter b = Θ/Aa1 describes the relation between the characteristic vertical
and horizontal temperature differences. At the interface, the normal components of
the velocity vanish:

z = 0: vz1 = vz2 = 0; (5)

and the continuity conditions for the tangential components of the velocity

z = 0: vx1 = vx2, vy1 = vy2, (6)

for the tangential stresses

z = 0: η
∂vx1

∂z
=
∂vx2

∂z
− Mη

P

∂T1

∂x
, η

∂vy1

∂z
=
∂vy2

∂z
− Mη

P

∂T1

∂y
, (7)

for the temperature

T1 = T2, (8)

and for the heat fluxes

κ
∂T1

∂z
=
∂T2

∂z
(9)

are fulfilled. Here M = αAa2
1/η1χ1 is the Marangoni number.

The boundary value problem (1)–(9) has an exact solution corresponding to a
parallel flow in the direction opposite to the direction of the temperature gradient:

vi = U
(0)
i (z)ex, pi = B

(0)
i x, Ti = x+Θ

(0)
i (z), i = 1, 2,

where ex is the unit vector on the axis x,

U
(0)
1 (z) = −aηM

(
1 + 4z + 3z2

)
4P (1 + aη)

, (10)

U
(0)
2 (z) = −ηM

(
a2 − 4az + 3z2

)
4aP (1 + aη)

, (11)
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Θ
(0)
1 (z) =

aηM(1 + z)
[
a(aχ+ κ)− (1 + aκ)

(
z + 5z2 + 3z3

)]
48(1 + aη)(1 + aκ)

− b(z + 1)

1 + aκ
, (12)

Θ
(0)
2 (z) =

ηM(a− z) [a2(aχ+ κ) + χ(1 + aκ)
(
a2z − 5az2 + 3z3

)]
48a(1 + aη)(1 + aκ)

− b(κz + 1)

1 + aκ
, (13)

B
(0)
1 = − 3aηM

2(1 + aη)P
, (14)

B
(0)
2 = − 3M

2aP (1 + aη)
. (15)

We assume here that there are no mean longitudinal fluxes of fluids, so that∫ 0

−1

dzU(0)
1 (z) = 0,

∫ a

0

dzU(0)
2 (z) = 0. (16)

The velocity is negative near the interface and positive near the rigid walls. On the
interface, the absolute value of velocity is

vs = |U(0)
1 (0)| = aηM/4P (1 + aη). (17)

This parallel flow is an analogue of the return thermocapillary flow considered in the
one-layer approach (Davis 1987).

The temperature profiles (12) and (13) are generated by the combined action of the
heat advection by the parallel flow (the terms proportional to M) and the external
heating from below (the terms proportional to b). The functions Θ(0)

1 (z) and Θ
(0)
2 (z)

can be non-monotonic. For instance, the vertical component of the temperature
gradient in the lower fluid has equal minima in the points z = −1 and z = 0:

Θ
(0)′
1 (−1) = Θ

(0)′
1 (0) = − aηM(1− χa2)

48(1 + aη)(1 + aκ)
− b

1 + aκ
, (18)

and a maximum in the point z = −1/3:

Θ
(0)′
1 (−1/3) =

aηM[a(aχ+ κ) + (7/9)(1 + aκ)]

48(1 + aη)(1 + aκ)
− b

1 + aκ
. (19)

Thus, if 1 − χa2 > 0, the vertical component of the temperature gradient is negative
near the boundaries z = −1 and z = 0, but it is positive in the middle of the layer, if
b/M is less than a certain value. The sign of the interfacial temperature

Θs = Θ
(0)
1 =

ηMa2(aχ+ κ)

48(1 + aη)(1 + aκ)
− b

1 + aκ
(20)

is also determined by the ratio b/M. If 1 − χa2 < 0, the temperature profile is
non-monotonic in the upper fluid.

The goal of the present paper is the investigation of the linear stability of the
parallel thermocapillary flow (10)–(15) (§ 3) and the simulation of secondary flows
(§ 4).
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3. Linear stability theory
3.1. Basic equations

We linearize the fields of all the variables that appear in the boundary value problem
(1)–(9) around the stationary solution (10)–(15):

vi(x, z, t) = U
(0)
i (z)ex + ṽi(z) exp (ik · x+ λt),

Ti(x, z, t) = Θ
(0)
i (z) + T̃i(z) exp (ik · x+ λt),

pi(x, z, t) = B
(0)
i x+ p̃i(z) exp (ik · x+ λt),

where x = (x, y), k = (kx, ky) are horizontal two-dimensional vectors.
Let kx = k sin α, ky = k cos α. It is convenient to perform a transformation of

horizontal coordinates x = X cos α + Y sin α, y = −X sin α + Y cos α. After this
transformation, the wave vector k is directed along axis Y , and the disturbances do
not depend on X.

We obtain the following equations for disturbances of the parallel flow:

λṽXi + ik sin αU(0)
i ṽXi + cos αU(0)′

i ṽzi = ci(ṽ
′′
Xi − k2ṽXi), (21)

λṽY i + ik sin αU(0)
i ṽY i + sin αU(0)′

i ṽzi = −ikeip̃i + ci(ṽ
′′
Y i − k2ṽY i), (22)

λṽzi + ik sin αU(0)
i ṽzi = −eip̃′i + ci(ṽ

′′
zi − k2ṽzi), (23)

λT̃i + ik sin αU(0)
i T̃ +Θ

(0)′
i ṽzi + cos α ṽXi + sin α ṽY i = (di/P )(T̃ ′′ − k2T̃ ), (24)

ṽ′zi + ikṽY i = 0, i = 1, 2 (25)

where c1 = d1 = e1 = 1, c2 = 1/ν, d2 = 1/χ, e2 = ρ, and a prime denotes differentia-
tion with respect to z.

Introducing the stream function disturbance ψ̃i, ṽzi = −ikψ̃i, ṽY i = ψ̃′ and eliminat-
ing the pressure disturbance, we obtain the following eigenvalue problem describing
the stability of the parallel flow:

ci(ψ̃
′′′′
i − 2k2ψ̃′′i + k4ψ̃i)− ik sin α[U(0)

i (ψ̃′′i − k2ψ̃i)−U(0)′′
i ψ̃i]− λ(ψ̃′′i − k2ψ̃i) = 0; (26)

λṽXi + ik sin αU(0)
i ṽXi − ik cos αU(0)′

i ψ̃i = ci(ṽ
′′
Xi − k2ṽXi); (27)

λT̃i + ik sin αU(0)
i T̃i − ikΘ(0)′

i ψ̃i + cos αṽXi + sin αψ̃′i = (di/P )(T̃ ′′i − k2T̃i); (28)

z = −1: ψ̃1 = 0, ψ̃′1 = 0, ṽX1 = 0, T̃i = 0; (29)

z = a: ψ̃2 = 0, ψ̃′2 = 0, ṽX2 = 0, T̃i = 0; (30)

z = 0: ṽ′X1 − η−1ṽ′X2 = 0, −ψ̃′′1 + η−1ψ̃′′2 = (ikM/P )T̃1; (31)

ṽX1 = ṽX2, ψ̃1 = ψ̃2 = 0, ψ̃′1 = ψ̃′2; (32)

T̃1 = T̃2, κT̃ ′1 = T̃ ′2. (33)

3.2. Discussion of results

The calculations have been performed for a real air–water system (at 20◦ and 1
bar) with the following parameters: η = 55.3, ν = 0.0659, κ = 23.3, χ = 0.00667,
P = 6.96, a = 1 (Perry 1997; Vargaftik 1975). In this case 1 − χa2 > 0, thus in the
basic flow the vertical component of the temperature gradient in the upper layer is
always negative, while in the lower layer there exists a region with a positive value
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Figure 2. (a) Neutral curves for b = 100: the closed neutral curve for stationary longitudinal rolls,
α = 0 (line 1); the neutral curve for hydrothermal waves at the critical angle α = αc (line 2);
the neutral curve for hydrothermal waves, α = 0 (line 3). Points A and B determine the interval
of existence of stationary longitudinal rolls, point C determines the onset threshold of oblique
hydrothermal waves. (b) Dependence ω(k) for hydrothermal waves at α = αc (line 2) and at α = 0
(line 3); b = 100.

of the temperature gradient, if b/M < 0.864. The temperature Θs on the interface is
positive if b/M < 0.477 and negative in the opposite case.

In the case b = 0, which corresponds to the thermocapillary flow generated by
a horizontal temperature gradient, the instability appears with respect to oblique
hydrothermal waves, i.e. the direction of the critical wavevector is characterized by
a certain value of α, 0 < α < 90◦. These waves propagate in the direction opposite
to the direction of the flow at the interface (see Smith & Davis 1983a). This type
of instability is important in the interval 0 < b < bF , bF ≈ 162.4. A typical neutral
curve calculated for the critical inclination angle is shown in figure 2(a) (line 2).
The dependence of the frequency ω = Imλ on the wavenumber k for the critical
inclination angle is shown in figure 2(b) (line 2). The critical value of the Marangoni
number Mc, which corresponds to the minimum of the neutral curve, grows from
M = MH ≈ 263.9 when b = 0 to M = MF ≈ 314.9 when b = bF (see line 3 in
figure 3), while the angle α decreases from αH ≈ 57.6◦ to αF ≈ 30◦. The critical
wavenumber kc and the critical frequency ωc decrease slowly as b grows (kH ≈ 2.67,
ωH ≈ 5.91; kF ≈ 2.58, ωF ≈ 4.95). Note that the phase velocity of the hydrothermal
wave vph = ωc/kc is significantly smaller than the fluid velocity at the interface vs (see
(17)). For instance, at point H vph ≈ 2.21, vs ≈ 9.31; at point F vph ≈ 1.92, vs ≈ 11.1.
The group velocity vgr = dω/dk calculated at point k = kc, M = Mc is rather small
for hydrothermal waves (at point H vgr ≈ 0.507, at point F vgr ≈ 0.0885).

The opposite case b→∞ corresponds to Pearson’s Marangoni convection (Pearson
1958) by heating from below in the absence of a horizontal component of the tem-
perature gradient. In this limit, the critical Marangoni number Mc ∼M ′

c/b, where M ′
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Figure 3. Boundaries of instability with respect to stationary longitudinal rolls (α = 0; lines 1
and 2), oblique hydrothermal waves (α = αc; line 3) and transverse travelling rolls (α = 90◦; lines
4 and 5). Point D corresponds to the disappearance of longitudinal rolls; point E determines
the transition between longitudinal rolls and transverse travelling rolls; point F determines the
transition between oblique hydrothermal waves and transverse travelling rolls; point G corresponds
to the disappearance of transverse travelling rolls.

is the Marangoni number defined by means of the transverse temperature difference,
which remains finite and does not depend on the direction of the wavevector. The
instability is monotonic, and the stability boundary can be calculated analytically (see
Smith 1966). For the air–water system with a = 1 M ′

c ≈ 21, kc ≈ 2 (see Gilev, Nepom-
nyashchy & Simanovskii 1987). At arbitrary large but finite b, the degeneracy of λ(α)
is broken. Only longitudinal rolls with axis parallel to the horizontal component of
the temperature gradient (α = 0) grow monotonically, while any other disturbances
grow in an oscillatory way because of the drift by the main flow. We have found
that at large values of b the disturbances with α = 0 are the most unstable ones. The
corresponding stability boundary is shown in figure 3 (line 1).

Surprisingly, Pearson’s Marangoni instability disappears at rather large values of
parameter b, b = bD ≈ 88.5 (see point D in figure 3). Note, that for b = bD the
horizontal temperature gradient is less than the mean vertical one by two orders of
magnitude. Nevertheless, such a small horizontal temperature gradient turns out to
be sufficient for complete suppression of Pearson’s instability. This instability appears
only at b > bD in a small closed region in the space of parameters (α, k, M) around the
point α = 0, k = kD ≈ 2.31, M = MD ≈ 47.9 (see line 1 in figure 2a). The explanation
of this paradox is as follows. Because the heat conductivity of the water is much larger
than that of the air (κ = 23.3), the vertical gradient in the water is actually much
less than b. Using formula (20), which determines the temperature on the interface
Θs (note that Θs ≈ −b/κ+M/48 since κ� 1� χ, η � 1) and evaluating expression
(20) at point (b = bD,M = MD), we find that Pearson’s instability is damped when
the mean vertical temperature gradient in the water layer is only 2.7 times larger than
the horizontal temperature gradient.

For the fixed value of α = 0, the stability boundary is a closed curve in the plane
(k,M) (line 1 in figure 2a), which is located much lower than the stability boundary
for the hydrothermal waves (line 2 in figure 2a). The minimum and maximum points
of the closed neutral curve (points A and B in figure 2a) determine the interval of
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stationary instability MA < M < MB . If the heating is enhanced while maintaining
constant the ratio of characteristic vertical and horizontal temperature differences b,
the parallel flow first becomes unstable with respect to longitudinal rolls at M = MA,
but then it is restabilized when M > MB . The parallel flow becomes unstable again
(this time with respect to inclined hydrothermal waves) only for much larger values
of the Marangoni number M > MC , where point C corresponds to the minimum
of the neutral curve for hydrothermal waves at the critical angle α = αc (line 2
in figure 2a). The dependence of MA, MB and MC on b are presented in figure 3
(lines 1, 2 and 3, respectively). Lines 1 and 2 merge at point (bD,MD) (point D in
figure 3).

As b increases, the interval of angles |α| < αm where Pearson’s instability occurs,
grows. At b = b1, b1 ≈ 118, αm reaches 90◦, i.e. at b > b1 for any direction of the
wavevector there exists an interval of instability. However, the critical Marangoni
number MA corresponds to α = 0 in the whole region b > bD . The maximum of the
neutral surface M = M(k, α), MB , corresponds to the value α = 0 only in the interval
bD < b < bE , bE ≈ 154.6.

For values of b slightly smaller than bE , a new maximum appears at α = 90◦.
It is caused by a new instability mode which corresponds to two-dimensional rolls
directed perpendicularly to the direction of the basic flow. For b = bE , both maxima
have the same height M = ME ≈ 181.5 (see point E in figure 3). When b > bE ,
the maximum at α = 90◦ becomes higher than the maximum at α = 0. Thus, the
lower boundary of the stability gap between the regions of Pearson’s instability and
the instability with respect to hydrothermal waves is connected with two-dimensional
rolls. The dependence of the corresponding critical Marangoni number on b is shown
in figure 3 as line 4. Similarly, when b increases, an additional minimum appears at
α = 90◦ on the neutral surface M = M(k, α) for hydrothermal waves which competes
with the minimum at α = αc, αc 6= 90◦. The former minimum corresponds to waves
moving in the direction of the flow at the interface, i.e. to drifting rolls. Both minima
provide the same critical Marangoni number M = MF when b = bF (codimension-2
point; see point F in figure 3). When b > bF , the upper boundary of the stability gap
is connected with two-dimensional disturbances (line 5 in figure 3) (as is its lower
boundary). At b = bG, bG ≈ 164.3, lines 4 and 5 merge with M = M5 ≈ 276.1 (point
G in figure 3), and the stability gap disappears.

Note that for the two-dimensional instability mode described above, ω 6= 0, because
the rolls are driven by the basic flow. Unlike hydrothermal waves, the drifting
convective rolls move in the same direction as the flow at the interface. Moreover,
the phase velocity of disturbances can be even larger than the fluid velocity on the
interface vs (see (17)). At the same time, the group velocity of waves is always smaller
than vs. For instance, at point F vs ≈ 11.1, vph ≈ 13.4, vgr ≈ 10.1.

Similarly, when b increases, an additional minimum appears at α = 90◦ on the
neutral surface M = M(k, α) for hydrothermal waves which competes with the
minimum at α = αc, αc 6= 90◦. The former minimum corresponds to waves moving in
the direction of the flow at the interface, i.e. to drifting rolls. Both minima provide the
same critical Marangoni number M = MF when b = bF , bF ≈ 162.4 (codimension-2
point; see point F in figure 3). When b > bF , the upper boundary of the stability gap
is connected with two-dimensional disturbances (line 5 in figure 3) (as is its lower
boundary).

At b = bG, bG ≈ 164.3, lines 4 and 5 merge with M = M5 ≈ 276.1 (point G in
figure 3), and the stability gap disappears.

The transition between the inclined hydrothermal waves moving upstream and
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the two-dimensional waves moving downstream takes place at the value bF/MF ≈
0.515. Note that this value is close to the value b/M ≈ 0.477 where the quantity
Θs, which characterizes the mean vertical temperature gradient in water, changes
its sign. Indeed, the explanation of the upstream motion of hydrothermal waves
in a one-layer system (Davis 1987) is based on the fact that a downward flow
generates a subsurface heating, which takes place because of the positive temperature
gradient. In our case, because the heat diffusivity of air is much larger than that
of water, the heat advection by a flow disturbance in air can be ignored, thus the
direction of the temperature gradient in water is crucial. For relatively small b/M,
the mean vertical temperature gradient in water is mainly positive, and the direction
of the wave propagation can be explained as in the case of a one-layer system.
For larger values of b/M, the downward flow causes a subsurface cooling, which
influences the propagation direction of a temperature disturbance in the opposite
way.

Let us summarize the main predictions of the linear theory. For relatively small val-
ues of b (0 < b < bF ) and large values of M, the excitation of inclined hydrothermal
waves is expected (line 3 in figure 3). These waves move in the opposite direction to
the flow at the interface. For relatively large values of b (b > bD) and small values of
M, the theory predicts the appearance of stationary convective rolls due to Pearson’s
instability (lines 1, 2 in figure 3). The axes of rolls are ordered by the thermocap-
illary flow along the direction of the imposed horizontal temperature gradient. For
intermediate values of M, the convective rolls are ordered across the direction of the
horizontal temperature gradient, and they drift with the thermocapillary flow. Unlike
the hydrothermal waves, the drifting rolls move in the same direction as the flow at
the interface.

4. Nonlinear simulations
4.1. Description of the method

We have performed numerical simulations of the flow regimes predicted by the linear
stability theory.

We shall describe in more detail the numerical approach for nonlinear simulations
of the longitudinal rolls (spiral flows) which appear due to the instability of the basic
thermocapillary flow with respect to monotonically growing disturbances with α = 0.
One can expect that the corresponding solutions of the nonlinear boundary value
problem (1)–(9) have the following structure:

vi = vi(y, z), pi = pi(y, z) + Bix, Ti = x+Θi(y, z), i = 1, 2. (34)

We shall assume that the motion is spatially periodic in y with a certain period
L = l/a1. Constants Bi are unknown and should be determined from the conditions
of vanishing mean horizontal fluxes of fluids:∫ L/2

−L/2
dy

∫ 0

−1

dz vx1(y, z) = 0,

∫ L/2

−L/2
dy

∫ a

0

dzvx2(y, z) = 0. (35)

For spiral flows (34) the continuity equations

∂vyi

∂y
+
∂vzi

∂z
= 0, i = 1, 2,

do not include vxi. That is why it is possible to define the stream functions ψi of the
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transverse flow in the following way:

vyi =
∂ψi

∂z
, vzi = −∂ψi

∂y
. (36)

After elimination of the pressure fields pi(y, z) in the usual manner, we obtain the
following nonlinear boundary value problem:

∂

∂t
∆⊥ψi +

∂ψi

∂z

∂

∂y
∆⊥ψi − ∂ψi

∂y

∂

∂z
∆⊥ψi = ci∆

2
⊥ψi; (37)

∂

∂t
Ui +

∂ψi

∂z

∂

∂y
Ui − ∂ψi

∂y

∂

∂z
Ui = ci∆

2
⊥Ui − eiBi; (38)

∂

∂t
Θi +

∂ψi

∂z

∂

∂y
Θi − ∂ψi

∂y

∂

∂z
Θi +Ui =

di

P
∆⊥Θi; (39)

z = −1: ψ1 = 0,
∂ψ1

∂z
= 0, U1 = 0, Θ1 = 0; (40)

z = a: ψ2 = 0,
∂ψ2

∂z
= 0, U2 = 0, Θ2 = −b; (41)

z = 0: ψ1 = ψ2 = 0,
∂ψ1

∂z
=
∂ψ2

∂z
, U1 = U2; (42)

η
∂2ψ1

∂z2
=
∂2ψ2

∂z2
− Mη

P

∂Θ1

∂y
; (43)

η
∂U1

∂z
=
∂U2

∂z
− Mη

P
; (44)

Θ1 = Θ2; (45)

κ
∂Θ1

∂z
=
∂Θ2

∂z
; (46)

ψi(y + L, z) = ψi(y, z), Ui(y + L, z) = Ui(y, z), Θi(y + L, z) = Θi(y, z), i = 1, 2,

(47)

where

∆⊥ =
∂2

∂y2
+

∂2

∂z2
, Ui = vxi, c1 = d1 = e1 = 1, c2 = 1/ν, d2 = 1/χ, e2 = ρ.

Constants Bi (i = 1, 2) should be found from the conditions∫ L/2

−L/2
dy

∫ 0

−1

dz U1 = 0,

∫ L/2

−L/2
dy

∫ a

0

dz U2 = 0. (48)

For the calculation of Bi and the fields Ui that satisfy conditions (48), the following
procedure is applied. Functions Ui are presented in the form

Ui = Ũi +

2∑
j=1

ejBjVij , i = 1, 2, j = 1, 2, (49)



Thermocapillary flows with inclined temperature gradient 151

where Ũi and Vij satisfy the following equations and boundary conditions:

∂

∂t
Ũi +

∂ψi

∂z

∂

∂y
Ũi − ∂ψi

∂y

∂

∂z
Ũi = ci∆⊥Ui; (50)

z = −1: Ũ1 = 0: z = a: Ũ2 = 0; (51)

z = 0: Ũ1 = Ũ2, η
∂Ũ1

∂z
=
∂Ũ2

∂z
− Mη

P
; (52)

Ũi(y + L, z) = Ũi(y, z), (53)

∂

∂t
Vij +

∂ψi

∂z

∂

∂y
Vij − ∂ψi

∂y

∂

∂z
Vij = ci∆⊥Vij − δij − ∂ lnBj

∂t
Vij; (54)

z = −1: V1j = 0: z = a: V2j = 0; (55)

z = 0: V1j = V2j , η
∂V1j

∂z
=
∂V2j

∂z
; (56)

Vij(y + L, z) = Vij(y, z), (57)

i = 1, 2; j = 1, 2; and δij is the Kronecker symbol. After the calculation of Ũi and
Vij (the last term in (54) is evaluated from the previous time steps), expression (49) is
substituted into conditions (48), and the system of two linear algebraic equations for
Bj is solved.

Solutions of the boundary value problem (37)–(48) are obtained by the finite dif-
ference method. The ‘stream function–vorticity’ variables are used to solve equation
(37) with corresponding boundary conditions (for details, see Simanovskii & Nepom-
nyashchy 1993). Equations and boundary conditions (37)–(47) are approximated on
a uniform mesh using a second-order approximation for the spatial coordinates. The
integration of evolution equations is performed by means of an explicit scheme. The
rectangular mesh 28 × 56 was used. The time step was chosen from the stability
conditions.

For simulation of inclined hydrothermal waves, we performed the transformation
of variables

x = X cos α+ Y sin α, y = −X sin α+ Y cos α (58)

and presented the solution in the form

vi = vi(Y , z), pi = pi(Y , z) + BiX, Ti = X cos α+ Y sin α+Θi(Y , z), i = 1, 2.

(59)

In this case, equation (39) is replaced by the following equation:

∂

∂t
Θi +

∂ψi

∂z

(
∂

∂y
Θi + sin α

)
− ∂ψi

∂y

∂

∂z
Θi +Ui cos α =

di

P
∆⊥Θi, (60)

and boundary conditions (43), (44) take the form

η
∂2ψ1

∂z2
=
∂2ψ2

∂z2
− Mη

P

(
∂

∂y
Θ1 + sin α

)
, (61)

η
∂U1

∂z
=
∂U2

∂z
− Mη

P
cos α. (62)

The boundary value problem obtained was solved in the same way as in the case of
longitudinal rolls.
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Figure 4. Isolines for inclined hydrothermal waves. (a) The stream function: 0.0706 (1), 0.035 (2),
−0.0006 (3), −0.0362 (4), −0.0717 (5); (b) the temperature disturbance: 0.00294 (1), −0.00188 (2),
−0.0067 (3), −0.0115 (4), −0.0163 (5); (c) the longitudinal velocity: 0.0796 (1), −0.0688 (2), −0.217
(3), −0.366 (4), −0.514 (5). M = 328, b = 100, α = 41◦, L = 2.35.

In the simulation of drifting transverse rolls α was taken equal to 90◦ in equations
(58)–(62).

4.2. Numerical results

We have investigated the nonlinear flow regimes for the same fluid system as in § 3.2.
First, let us consider the hydrothermal waves with an oblique wavevector (0 <

α < 90◦). This type of wave is developed for relatively small values of b/M, when
there exists a region with a positive vertical component of the temperature gradient
in the lower layer, and the interfacial temperature Θs is positive (see (20)). Snapshots
of the fields of the stream functions ψi(Y , z), the disturbances of the temperature
Θi(Y , z) − Θ

(0)
i (z), and the longitudinal velocity Ui(Y , z) (i = 1, 2) are shown in

figure 4. For technical reasons, the non-dimensional values of ψi, Ui and Θi − Θ(0)
i

are given in units ν2, ν2/a2 and Θ, respectively. The motion is a travelling wave,

fi(Y , z, t) = fi(Y − ct, z), i = 1, 2, where fi = (ψi, Ui,Θi − Θ
(0)
i ), with a positive

phase velocity c, i.e. the waves move in the direction opposite to the Y -component
of the flow velocity at the interface. The explanation of this phenomenon given
by Davis (1987) is based on the fact that the vertical component of the tempera-
ture gradient in water is positive in a certain region. Let us consider the fields of
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Figure 5. Isolines for transverse travelling rolls (a) The stream function: 0.0619 (1), 0.0306 (2),
−0.0007 (3), −0.0319 (4), −0.0632 (5); (b) the temperature disturbance: 0.00138 (1), 0.00051 (2),
−0.00036 (3), −0.00123 (4), −0.0021 (5). M = 200, b = 200, α = 90◦, L = 2.35.

variables shown in figures 4(a) and 4(b). A negative disturbance of the interfacial
temperature is situated to the left of the computation region centre (see figure 4b),
and it generates a corresponding descending motion in the water. Because of the
incompressibility of the fluid, an ascending motion appears in the region to the right
of the centre (see figure 4a). The latter flow leads to a cooling in the region under
the interface, where the vertical component of the temperature gradient is positive.
This effect tends to shift the minimum of the interfacial temperature to the right.
That is why the wave moves to the right, despite the advection of the interfacial
temperature field by the Y -component of the interfacial velocity. Because of the
large thermal diffusivity of air, the influence of the motion in the upper fluid can be
neglected.

Let us discuss now the results of nonlinear simulations of two-dimensional (trans-
verse) rolls moving in the same direction as the interfacial flow. This kind of wave
appears at larger values of b/M, where the region of a positive vertical temperature
gradient is relatively small, and the sign of the interfacial temperature (20) in water
is negative (i.e. the external heating from below dominates the heating from above
caused by the basic flow). The snapshots of the fields of variables are shown in
figure 5. Let us emphasize that the temperature in the region of an ascending flow is
now higher than that in the region of a descending flow. Thus, the mechanism driving
the wave in the direction opposite to the interfacial flow is switched off. The minimum
of the interfacial temperature now moves in the same direction as the interfacial flow,
i.e. the wave moves to the left (c < 0).

Finally, let us consider longitudinal rolls (spiral flows). The simulations have been
done for b = 100 and L = 2.75 (i.e. k = 2π/L ≈ 2.285). The linear theory predicts
an instability in the interval between M = MA ≈ 28.47 (with the critical wavenumber
k = 2.11) and M = MB ≈ 82.59 (with the critical wavenumber k = 2.825). The
numerical simulations reveal the existence of stable spiral flows with the chosen
period L in the interval M1 < M < M2, M1 ≈ 30, M2 ≈ 80. No subcritical flows have
been found, neither when M > MA nor when M < MB . Thus, the prediction of the
linear theory concerning the restabilization of the parallel flow above the line 2 of
figure 3 has been verified by our numerical simulations. The isolines of the stream
function fields ψi and the longitudinal velocity fields Ui calculated for M = 61.2 are
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Figure 6. Isolines of (a) the stream function fields and (b) longitudinal velocity fields for periodic
stationary spiral flow at M = 61.2, b = 100, α = 0, L = 2.75.

shown in figure 6. The secondary motion ψi(y, z) has a four-vortex structure. The
fields of variables satisfy the following symmetry conditions:

ψi(y, z) = −ψi(−y, z), Ui(y, z) = Ui(−y, z), Θi(y, z) = Θi(−y, z). (63)

5. Conclusions
The stability of the return thermocapillary flow in an air–water system with an

imposed inclined temperature gradient has been investigated. Three instability modes
have been found: oblique hydrothermal waves, longitudinal rolls and two-dimensional
waves. We predict several effects that could be observed in experiments.

Because of the large difference between heat conductivities of air and water, a
very small (about 1%) horizontal component of the mean temperature gradient is
sufficient for a full suppression of Pearson’s instability in the form of longitudinal
rolls.

In a certain region of parameter b (this parameter characterizes the ratio between
the longitudinal and vertical components of the temperature gradient) the neutral
curve for Pearson’s instability is closed. Thus, the longitudinal rolls exist in a bounded
interval of Marangoni numbers, i.e. the parallel flow is restabilized with the growth
of the temperature gradient.

In addition to oblique hydrothermal waves and longitudinal rolls, we predict the
appearance of transverse rolls drifting with the flow, in a certain region of parameters.

Preliminary experiments on the convective flows in a liquid layer with an inclined
temperature gradient have been done recently by A. B. Ezersky (2000, personal
communication). A transition between longitudinal rolls and waves moving in the
direction of the interfacial flow has been observed. The verification of theoretical
predictions given in the present paper needs additional experiments.

This work was supported in part by the German–Israeli Foundation for Scientific
Research and Development.
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